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1. Introduction 
 

Each spring, the Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed 
(HWT), organized by the Storm Prediction Center (SPC) and National Severe Storms Laboratory (NSSL), 
conducts a collaborative experiment to test emerging concepts and technologies designed to improve 
the prediction of hazardous convective weather.  The primary goals of the HWT are to accelerate the 
transfer of promising new tools from research to operations, to inspire new initiatives for operationally 
relevant research, and to identify and document sensitivities and the performance of state-of-the art 
experimental convection-allowing (1 to 3 km grid-spacing) modeling systems.   

The 2020 Spring Forecasting Experiment (SFE 2020), a cornerstone of the EFP, will be conducted 
27 April – 29 May.  Because of the COVID-19 pandemic, restrictions on travel and gatherings preclude 
an in-person experiment in the HWT.  However, to maintain momentum in several areas of convection-
allowing model (CAM) development, the EFP will perform a limited, virtual experiment with external 
participants focused on next-day evaluations of model performance. In addition, local staff and National 
Weather Service (NWS) forecasters will perform a small number of online real-time forecasting activities 
in the afternoon focused on Warn-on-Forecast applications.  The pandemic will not impact contributions 
of experimental CAM datasets that were planned for SFE 2020.  Thus, these systems will run as originally 
planned, and for the 5th year have been coordinated into a single ensemble framework called the 
Community Leveraged Unified Ensemble (CLUE; Clark et al. 2018).  The 2020 CLUE is constructed by 
using a set of common model specifications (e.g., grid-spacing, domain size, model version, etc.) so that 
the simulations contributed by each group can be used in carefully designed controlled experiments.  
This design will once again allow us to conduct several experiments geared toward identifying optimal 
configuration strategies for CAM ensembles. The 2020 CLUE includes 41 members with grid-spacing ≤
	3-km.  SFE 2020 will also involve the continued testing of a 3-km grid-spacing Warn-on-Forecast 
prototype system (WoFS Ensemble, hereafter), which will be used for the fourth year to issue very short 
lead-time outlooks.  Additional WoFS Ensemble simulations will run with 1.5-km grid-spacing to test the 
impact of more refined grid-spacing.   

This operations plan summarizes the core interests of SFE 2020 with information on experiment 
operations.  The organizational structure of the HWT and information on various forecast tools and 
diagnostics can also be found in this document.  The remainder of the operations plan is organized as 
follows: Section 2 provides details on model and products being tested during SFE 2020 and Section 3 
describes the core interests and new concepts being introduced for SFE 2020.  A list of daily participants, 
details on the SFE forecasting, and more general information on the HWT are found in appendices. 
 
2.  Overview of Experimental Products and Models  
 

Daily model evaluation activities will occur from 10am – noon (CDT) focusing on various CLUE 
subsets.  The 2020 CLUE includes recent versions of the Advanced Research Weather Research and 
Forecasting (WRF-ARW) model, deterministic and ensemble forecasts based on the United Kingdom 
Met Office’s Unified Modeling System, and several stand-alone-regional configurations of the Finite 
Volume Cubed-Sphere model (FV3-SAR).  In addition to the CLUE, the operational 3-km grid-spacing 
High-Resolution Ensemble Forecast system Version 2.1 (HREFv2.1) will be examined, along with its 
updated version, HREFv3.  The rest of this section provides further details on each modeling system 
utilized in SFE 2020.   



 

 
5 

a) The 2020 Community Leveraged Unified Ensemble (CLUE) 
 
 The CLUE is a carefully designed ensemble with members contributed by NSSL, NOAA’s 
Environmental Modeling Center (EMC), NOAA’s Global Systems Laboratory (GSL), NCAR, NOAA’s 
Geophysical Fluid Dynamics Laboratory (GFDL), and the United Kingdom Meteorology Office (UK Met).  
Most members are initialized weekdays at 0000 UTC, while members within experiments testing 
different time-lagging strategies are initialized at various other times.  CLUE members have 3-km grid-
spacing and CONUS domain, except for the UK Met members which use 2.2 km grid-spacing and slightly 
sub-CONUS domain. Depending on the CLUE subset, forecast lengths range from 12 to 60 h.  Table 1 
summarizes all 2020 CLUE contributions. Subsequent tables provide details on members in each subset. 
 
Table 1 Summary of the 12 unique subsets that comprise the 2020 CLUE. 

Clue Subset # of 
mems 

IC/LBC perts Mixed 
Physics 

Data Assimilation Model 
Core 

Agency Init. 
Time(s) 

UTC 

HRRRv4 1 none no GSI-EnVar ARW GSL 00-23 

HRRRE 9 EnKF no EnKF ARW GSL 00, 06,  
12, 18 

gsl-fv3sar 4 none yes cold start FV3 GSL 00 

arw-ICs 2 none no cold start ARW NCAR 00 

ukmet 9 MOGREPS-G no cold start UM UK Met  18, 00 

um-ICs 2 none no cold start UM UK Met 00 

nssl-glm 1 none no NSSL-VAR (GLM) ARW NSSL 00 

nssl-noglm 1 none no NSSL-VAR (no GLM) ARW NSSL 00 

nssl-tl 6 none yes cold start ARW NSSL 02, 03, 05, 
08, 09, 11 

sarfv3-ICs 2 none no cold start FV3 NSSL 00 

emc-fv3sar 3 none no cold start FV3 EMC 00 

gfdl-fv3 1 none no cold start FV3 GFDL 00 
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Table 2 Specifications for the hrrrv4 CLUE member.  The next and final update to the deterministic Rapid Refresh, version 5 
(RAPv5), and HRRRv4, is scheduled for an operational implementation in June 2020. The physics suite for HRRRv4 
continues to use actively-developed versions of Thompson et al. (2014) aerosol-aware microphysics, MYNN PBL scheme, 
RUC land surface model and RRTMG SW/LW radiation schemes.  Enhancements have been made to the MYNN PBL 
scheme to further improve both representation of sub-grid-scale clouds and their effects on the local environment 
(reducing model bias of incoming radiation and temperature/moisture fields).  Gravity-wave drag enhancements have 
been made to improve representation of the effects of sub-grid terrain on the horizontal flow.  Land surface model and 
state changes include installation of an inland lake model for improved lake-temperature prediction, higher-resolution 
MODIS albedo and inland lake datasets, use of fractional sea-ice data and FVCOM dynamic specification of temperature 
and ice concentrations for the Great Lakes.  Finally, VIIRS-based fire-radiative power detections are used to specify 
wildfire-driven injection of particulate matter for 3-D advection and deposition of smoke plumes.  Enhancements to 
numerics in HRRRv4 include a reduction in magnitude of the 6th order filter for momentum, thermodynamic and 
hydrometeor fields to improve depiction of weaker small-scale cloud and precipitation features.  A new implicit-explicit 
vertical advection scheme in HRRRv4 permits larger vertical motion in intense convection to facilitate improved diagnosis 
of rotational features such as mesocyclones.  For data assimilation, The HRRRv4 uses an updated version of GSI and 
includes assimilation of additional datasets including lightning data from GOES (GLM), aircraft and RAOB moisture 
observations above 300 mb, and tropical cyclone central pressure estimates from TCvitals for improved position and 
structure of tropical systems.  A 36-member, hourly-cycled, storm-scale ensemble data assimilation system (HRRRDAS) 
provides a background deterministic state estimate (ensemble mean) and background ensemble for initialization of the 
CONUS HRRRv4.  This system is designed to improve use of conventional and radar observations during data assimilation 
with better representation of meso-to-storm scale covariances when compared with the comparatively coarse global 
ensemble (GDAS) used in HRRRv3.  More accurate retention and evolution of meso-to-storm scale features, particularly 
in the early forecast hours, are intended benefits of HRRRDAS use.  The HRRRDAS, while intended to improve deterministic 
HRRRv4 forecasts, also forms the basis for HRRR ensemble forecasts described in the HRRRE section.  

Member: 
HRRRv4 

ICs LBCs Microphysics PBL LSM Radiation Model 

hrrrv4 HRRRDAS RAP Thompson MYNN RUC RRTMG ARW 
 
Table 3 Specifications for the HRRRE CLUE members.  During spring 2020, GSL will run a parallel version of the 36-member, 

hourly-cycled, 3-km ensemble (“HRRR Data-Assimilation System” or “HRRRDAS”) that is a component of the HRRRv4 
operational implementation.  HRRRDAS members are initialized at 0900 and 2100 UTC from a combination of RAP for 
atmospheric ensemble mean, GDAS for atmospheric perturbations, and RAP/HRRR for land surface.  The 36 HRRRDAS 
members are cycled hourly with GSI-EnKF to assimilate conventional and radar-reflectivity observations.  The hourly 
cycling also includes cloud clearing.  Experimental HRRR Ensemble (HRRRE) forecasts are initialized from the first 9 
HRRRDAS members every 6 h.  Posterior inflation during the hourly cycling, random boundary-condition perturbations, 
and stochastic parameter perturbations (SPP) applied to the land-surface, PBL, and microphysics schemes contribute to 
spread of the HRRRE forecasts.  The HRRRDAS analyses and HRRRE forecasts provide initial conditions and boundary 
conditions for the experimental Warn-on-Forecast system.  Additional HRRRDAS/HRRRE documentation is available 
at https://rapidrefresh.noaa.gov/internal/pdfs/2020_Spring_Experiment_HRRRE_Documentation.pdf. 

Members: 
HRRRE 

ICs LBCs Microphysics PBL LSM Radiation Model 

hrrre01 enkf_m01b GFS Thompson MYNN RUC RRTMG ARW 
hrrre02 enkf_m02b GFS Thompson MYNN RUC RRTMG ARW 
hrrre03 enkf_m03b GFS Thompson MYNN RUC RRTMG ARW 
hrrre04 enkf_m04b GFS Thompson MYNN RUC RRTMG ARW 
hrrre05 enkf_m05b GFS Thompson MYNN RUC RRTMG ARW 
hrrre06 enkf_m06b GFS Thompson MYNN RUC RRTMG ARW 
hrrre07 enkf_m07b GFS Thompson MYNN RUC RRTMG ARW 
hrrre08 enkf_m08b GFS Thompson MYNN RUC RRTMG ARW 
hrrre09 enkf_m09b GFS Thompson MYNN RUC RRTMG ARW 
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Table 4 Specifications for the gsl-sarfv3 CLUE members.  These runs will use the stand-alone-regional (SAR) FV3 code contained 
within the UFS code base maintained by EMC as it was 4/9/2020.  Each run uses the HRRRv4 physics package.  The “Hord” 
column refers to the horizontal advection method. Hord = 5 is the fastest and least diffusive option, while Hord = 6 is a 
developmental scheme with an intermediate strength monotonicity constraint and is more diffusive than Hord = 5.   

Member: gsl-
sarfv3 

ICs LBCs Micro-physics PBL LSM Radiation Hord Model 

gsl-fv3sar01 HRRRv4 RAP Thompson MYNN RUC RRTMG 5 FV3 
gsl-fv3sar02 HRRRv4 RAP Thompson MYNN RUC RRTMG 6 FV3 
gsl-fv3sar03 GFS GFS Thompson MYNN RUC RRTMG 5 FV3 
gsl-fv3sar04 GFS GFS Thompson MYNN RUC RRTMG 6 FV3 

 
Table 5 Specifications for the arw-ICs CLUE members.  NCAR is providing 36-h forecasts initialized at 0000 UTC from GFS and 

UM analyses using version 3.6.1 of the WRF-ARW model over a 3-km domain spanning the CONUS.  Both forecasts have 
40 vertical levels with a 50-hPa top and use Thompson microphysics, MYJ PBL, Noah land-surface model, and RRTMG 
shortwave and longwave radiation with aerosol and ozone climatologies. In short, the two forecasts are identical except 
for their ICs and LBCs. 

Members: arw-
ICs 

ICs LBCs Microphysics PBL LSM Radiation Model 

arw-ICs01 GFS GFSf Thompson  MYJ NOAH RRTMG ARW 
arw-ICs02 UM UMf Thompson MYJ NOAH RRTMG ARW 

 
Table 6 Specifications for the ukmet CLUE members.  These single physics members, which use the Met Office Unified Model 

(UM) and Joint UK Land Environment Simulator (JULES), have 2.2 km grid-spacing with 70 vertical levels covering a 
slightly sub-CONUS domain.  The members are closely aligned with the UK ensemble, MOGREPS-UK.  The members are 
cold-start initialized from 3-h forecasts of 1800 and 0000 UTC initializations of the Met Office global ensemble system, 
MOGREPS-G, and provide 48-h forecasts. Model uncertainty is depicted by the Random Parameter (RP) scheme, which 
stochastically perturbs a subset of physics parameters from the PBL and microphysics schemes throughout the forecast.  
The PBL scheme consists of a 3D turbulent mixing scheme using a locally scale-dependent blending of Smagorinsky and 
non-local K-profile boundary layer mixing schemes, and the Smith cloud scheme is used, where partial cloudiness is 
diagnosed assuming a trianglular moisture distribution with a width that is a universally specified function of height only.   
There is no convection-parameterization and single-moment microphysics is used.  The “RA config” column refers to the 
“Regional Atmosphere” configuration.  For these members “RA2M” is used, which is designed for mid-latitudes.   

Members: 
ukmet 

ICs/LBCs RA config Micro-physics PBL Cloud 
Scheme 

Model 

ukmet01 MOGREPS-G01 RA2M single-mom. Smag. blended Smith UM 
ukmet02 MOGREPS-G02 RA2M single-mom. Smag. blended Smith UM 
ukmet03 MOGREPS-G03 RA2M single-mom. Smag. blended Smith UM 
ukmet04 MOGREPS-G04 RA2M single-mom. Smag. blended Smith UM 
ukmet05 MOGREPS-G05 RA2M single-mom. Smag. blended Smith UM 
ukmet06 MOGREPS-G06 RA2M single-mom. Smag. blended Smith UM 
ukmet07 MOGREPS-G07 RA2M single-mom. Smag. blended Smith UM 
ukmet08 MOGREPS-G08 RA2M single-mom. Smag. blended Smith UM 
ukmet09 MOGREPS-G09 RA2M single-mom. Smag. blended Smith UM 
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Table 7 Specifications for the um-ICs CLUE members contributed by the UK Met Office.  This member uses the same 
configuration as the ukmet members listed in Table 6, with the only difference being that ICs/LBCs are from the GFS and 
deterministic version of UK Met’s global model. 

Members: 
um-ICs 

ICs/LBCs RA config Micro-physics PBL Cloud 
Scheme 

Model 

um-ICs01 GFS RA2M single-mom. Smag. blended Smith UM 
um-ICs02 UM deterministic RA2M single-mom. Smag. blended Smith UM 

 
Table 8 Specifications for the nssl-glm and nssl-noglm CLUE members contributed by NSSL.  These runs use the HRRRv4 physics 

and RAPv3 as the background for a data assimilation system known as NEWS3DVAR (Fierro et al. 2016, 2018) that 
assimilates radar data and is run with and without total lightning data from the GOES Geostationary Lightning Mapper 
(GLM).  These forecasts are run to 12-h over a CONUS domain with 3-km grid-spacing.   

Members: nssl-
glm 

ICs LBCs Micro-physics PBL LSM Radiation Model 

nssl-glm NEWS3DVAR RAP Thompson MYNN RUC RRTMG ARW 
nssl-noglm NEWS3DVAR RAP Thompson MYNN RUC RRTMG ARW 

 
Table 9 Specifications for the nssl-tl members contributed by NSSL.  These members are initialized from the HRRRv4 ICs at 02, 

03, 05, 08, 09, and 11 UTC as part of a time-lagged ensemble.  All members use 3 km grid-spacing.  Members nssl-tl02 
and nssl-tl05 use the HRRRv4 physics package, and the other members use the NSSL-WRF physics configuration..   

Members: 
nssl-tl 

ICs LBCs Micro-
physics 

PBL LSM Radiation Forecast 
length (h) 

Model 

nssl-tl01 02Z HRRRv4 GFSf WSM6 MYJ NOAH RRTM/Dudhia 34 ARW 
nssl-tl02 03Z HRRRv4 GFSf Thompson MYNN RUC RRTMG 33 ARW 
nssl-tl03 05Z HRRRv4 GFSf WSM6 MYJ NOAH RRTM/Dudhia 31 ARW 
nssl-tl04 08Z HRRRv4 GFSf WSM6 MYJ NOAH RRTM/Dudhia 28 ARW 
nssl-tl05 09Z HRRRv4 GFSf Thompson MYNN RUC RRTMG 27 ARW 
nssl-tl06 11Z HRRRv4 GFSf WSM6 MYJ NOAH RRTM/Dudhia 25 ARW 

 
Table 10 Specifications for the sarfv3-ICs members contributed by NSSL.  Both sarfv3-ICs members will use the SAR FV3 code 

contained within the UFS code base maintained by EMC as it was 4/9/2020.  Both runs use an experimental configuration 
of 80 vertical levels.   

Members: nssl-
glm 

ICs LBCs Microphysics PBL LSM Radiation Model 

sarfv3-ICs01 GFS GFSf Thompson MYNN NOAH RRTMG FV3 
sarfv3-ICs02 UM UMf Thompson MYNN NOAH RRTMG FV3 
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Table 11 Specifications for the emc-fv3sar CLUE members.  All three members use the SAR FV3 code contained within the UFS 
code base maintained by EMC as it was 4/9/2020. For SFE 2020, EMC plans to provide three configurations of this system 
at 3-km grid-spacing and 50 vertical levels.  The first is the control version of the 3 km limited area, SAR configuration 
which has been running at EMC for about 2 years and utilizes the GFSv15 physics suite (emc-fv3sar).  The second is an 
experimental version of the SAR configuration which will use the Thompson microphysics and MYNN planetary boundary 
layer schemes (emc-fv3sarX).  The third configuration is similar to the second configuration but includes an hourly data 
assimilation cycle over a 6-hour period prior to issuance of a free forecast (emc-fv3sarDA).  EMC will leverage these three 
configurations to evaluate the impacts of running in a limited area capacity. The output grid is identical to that used by 
the NAM CONUSnest and HRRR domains. Each run is initialized daily at 0000 UTC with forecasts to 60 h using initial and 
3-hourly lateral boundary conditions from the 0000 UTC GFSv15 system currently in operations. 

Members: 
emc-fv3sar 

ICs LBCs Microphysics PBL LSM Radiation Model 

emc-fv3sar GFSv15 GFSv15f GFDL EDMF NOAH RRTMG FV3 
emc-fv3sarX GFSv15 GFSv15f Thompson MYNN NOAH RRTMG FV3 
emc-fv3sarDA GFSv15 GFSv15f Thompson MYNN NOAH RRTMG FV3 

 
Table 12 Specifications for the gfdl-fv3 CLUE member.  The GFDL configuration uses a combination of grid nesting (Harris and 

Lin, 2013) and stretching (Harris et al 2016) to refine a 13-km global grid to a 3-km nested grid covering the CONUS region. 
This model consists of FV3 coupled to a modified form of the GFS Physics (Chen et al 2019 and references therein) and the 
Noah land model. Yonsei University PBL scheme (Hong et al 2006) and the six-category single-moment GFDL microphysics 
(Zhou et al 2019) are used. The deep convective scheme is disabled on the nested grid. Initialization is a cold-start from 
regridded GFS real-time analyses. GFDL will provide simulations run daily at 00Z out to 126 hours to demonstrate the 
potential for medium-range prediction of convective-scale events. GFDL has made a variety of updates to the model since 
2019 including continued revisions to the GFDL microphysics and associated cloud-radiation interactions; revisions to YSU 
to better handle higher vertical resolutions; and improvements to the advection schemes and two-way nesting. 

Member: gfdl-
fv3 

ICs LBCs Microphysics PBL LSM Radiation Model 

gfdl-fv3 GFS n/a GFDL YSU NOAH RRTMG FV3 
 
 

The configuration of the 2020 CLUE will allow for several unique experiments that have been 
designed to examine issues immediately relevant to the design of a NCEP/EMC operational CAM-based 
ensemble.  Some of these experiments are listed below: 
 
Model initial condition vs. model core sensitivity: This experiment involves multi-agency, international 
collaboration among NCAR, NSSL, and the UK Met Office.  A matrix of 6 simulations will be examined, 
with NCAR, NSSL, and UK Met running WRF-ARW (Table 5), SAR-FV3 (Table 10), and UM (Table 7), 
respectively, initialized from both the GFS and UM global models.  The goal of this comparison is to 
examine forecast sensitivity to different initial conditions and model cores at convective scales. 
 
FV3-SAR Configurations: GSL, NSSL, and EMC will run various configurations of the FV3-SAR (Tables 4, 
10, and 11, respectively).  These coordinated runs will allow for the assessment of many aspects of FV3-
SAR configuration: physics, data assimilation, number of vertical levels, initial conditions, and horizontal 
advection settings.    
 
Single-model time-lagging: This experiment is designed to test single-model ensemble time-lagging 
strategies relative to an ensemble composed of members initialized from a single time.  The 1200 UTC 
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HRRRE (Table 3) will be compared to a HRRRE time-lagged ensemble, and a time-lagged ensemble based 
on deterministic HRRRv4 (Table 2) and NSSL-WRF (Table 9) configurations. 
 
Multi-model vs. time-lagging: This experiment will involve several sets of comparisons based at 0000 
UTC in which HREF will be used as a baseline to assess (1) single-model ensembles initialized from one 
time, (2) single model ensembles that are time-lagged, and (3) multi-model ensembles that are time-
lagged.  Each of the experiments will involve various combinations of 1800 and 0000 UTC initializations 
of HRRRE (Table 3) and the UK Met UM (Table 6).  
 
Total Lightning Data Assimilation: The goal of this experiment is to assess the value of assimilating total 
lightning data from the GOES-16 Geostationary Lightning Mapper (GLM) in regions with poor radar 
coverage by comparing two 12-h WRF runs: one with assimilation of GLM data and one without (Table 
8).      
 

To ensure consistent post-processing, visualization, and verification for subsets of CLUE ensemble 
members contributed by different collaborators, all groups will generally utilize similar post-processing 
software to output the same set of model output fields on the same grid.  For WRF-ARW and FV3-SAR 
members, the Unified Post-Processor software (UPP; available at 
http://www.dtcenter.org/upp/users/downloads/index.php) is used to output a minimum set of 123 
output fields from each CLUE member.  These fields (output in grib2 format) are the same as the 2D 
fields output by HRRRv3 and were chosen because of their relevance to a broad range of forecasting 
needs, including aviation, severe weather, and precipitation.  The UM ensembles will output a much 
smaller set of fields limited to low-level temperature, dewpoint, and winds; lowest model level and 
composite reflectivity, hourly maximum 2-5 km AGL updraft helicity, and total precipitation.  A table 
listing the output diagnostics for ARW is included in Appendix C.   
 
b) High Resolution Ensemble Forecast (HREFv2.1) System 
 

HREFv2.1 is a 10-member CAM ensemble currently running at EMC (forecasts viewable at:  
http://www.spc.noaa.gov/exper/href/).  HREFv2 was implemented operationally on 1 November 2017 
and was recently updated to include two HRRR members (one 6-h time lagged).  The design of HREFv2.1 
originated from the SSEO, which demonstrated skill for six years in the HWT and SPC prior to HREFv2 
operational implementation.  All members, except for the NAM CONUS Nest and HRRR, are initialized 
with a “cold-start”.  Forecasts to 36 h are produced at 0000 and 1200 UTC.  HREFv2.1 specifications are 
listed below in Table 13.   
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Table 13 Model specifications for HREFv2.1. 

HREFv2.1 ICs LBCs Micro-
physics 

PBL dx 
(km) 

Vertical 
Levels 

Included in HREF 
hours 

HRRRv3 RAP -1h RAP -1h Thompson MYNN 3.0 50 0 – 36 
HRRRv3 -6h RAP -1h RAP -1h Thompson MYNN 3.0 50 0 – 30 
HRW ARW RAP GFS -6h WSM6 YSU 3.2 50 0 – 48 
HRW ARW -12h RAP GFS -6h WSM6 YSU 3.2 50 0 – 36 
HRW NMMB RAP GFS -6h Ferrier-Aligo MYJ 3.2 50 0 – 48 
HRW NMMB -12h RAP GFS-6h Ferrier-Aligo MYJ 3.2 50 0 – 36 
HRW NSSL NAM NAM -6h WSM6 MYJ 3.2 40 0 – 48 
HRW NSSL -12h NAM NAM -6h WSM6 MYJ 3.2 40 0 – 36 
NAM CONUS Nest NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 48 
NAM CONUS Nest -12h NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 48  

 
c) High Resolution Ensemble Forecast (HREFv3) System 
 
 HREFv3 replaces the HRW NMMB simulations with emc-fv3sar (Table 11) and HRRRv3 with 
HRRRv4.   
 
Table 14 Model specifications for HREFv3.   

HREFv3 ICs LBCs Micro-
physics 

PBL dx (km) Vertical 
Levels 

Included in HREF 
hours 

HRRRv4 HRRRDA
S 

RAP -1h Thompson MYNN 3.0 50 0 – 36 

HRRRv4 -6h HRRRDA
S 

RAP -1h Thompson MYNN 3.0 50 0 – 30 

HRW ARW RAP GFS -6h WSM6 YSU 3.2 50 0 – 48 
HRW ARW -12h RAP GFS -6h WSM6 YSU 3.2 50 0 – 36 
HRW FV3 GFS GFS -6h GFDL EDMF 3 50 0 – 60 
HRW FV3 -12h GFS GFS-6h GFDL EDMF 3 50 0 – 48 
HRW NSSL NAM NAM -6h WSM6 MYJ 3.2 40 0 – 48 
HRW NSSL -12h NAM NAM -6h WSM6 MYJ 3.2 40 0 – 36 
NAM CONUS Nest NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 60 
NAM CONUS Nest -12h NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 48  

 
d) NSSL Warn-on-Forecast Experiments 
 

The NSSL Experimental Warn-on-Forecast System (WoFS) is a 36-member WRF-based ensemble 
data assimilation system used to produce very short-range (0-6 h) probabilistic 18-member forecasts of 
hazardous weather phenomena such as supercell thunderstorm rotation, hail, high winds, and flash 
flooding. The 900-km wide daily WoFS domain will target the primary region where severe weather is 
anticipated. The 2020 SFE will utilize the following three WoFS system configurations, described in detail 
below: (i) Real-time; (ii) High-resolution; and (iii) Dual Resolution Hybrid DA.    

The starting point for each day’s experiment will be the experimental High-Resolution Rapid 
Refresh Data Assimilation System (HRRRDAS) and the HRRRE (Table 3) provided by GSL. A 1-h forecast 
from the 1400 UTC, 36-member, hourly-cycled HRRRDAS analysis provides the initial conditions for all 
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three WoFS configurations.  Boundary conditions for the WoFS are provided by the combination of the 
0600 UTC and 1200 UTC HRRRE forecasts, which are initialized from the HRRRDAS analyses at these 
times, for the period 1500 UTC Day 1 – 0300 UTC Day 2. 
 

i) Real-time WoFS 
 
The full 36-member real-time WoFS ensemble, run from 1500 UTC Day 1 to 0300 UTC Day 2, will 

be updated every 15 minutes by GSI-EnKF data assimilation of MRMS radar reflectivity and radial velocity 
data, cloud water path retrievals, atmospheric motion vectors, and clear-sky radiances from the GOES-
16 imager, data from the GOES-16 Geostationary Lightning Mapper (GLM), and Oklahoma Mesonet 
observations (when available). Conventional (i.e. prepbufr) observations will also be assimilated at 15 
minutes past each hour. All real-time WoFS ensemble members utilize the NSSL 2-moment microphysics 
parameterization and the RUC land-surface model; however, the PBL and radiation physics options are 
varied amongst the ensemble members to increase ensemble spread, given the fact that the EnKF may 
underrepresent model physics errors. Six-hour (three-hour) 18-member ensemble forecasts will be 
initialized from the real-time WoFS analyses hourly (half-hourly) from 1700 UTC Day 1 through 0300 UTC 
Day 2. These forecasts will be viewable using the web-based WoFS Forecast Viewer 
(https://wof.nssl.noaa.gov/realtime/). Table 15 shows the differences in model specifications between 
the HRRRE and real-time WoFS, and Figure 1 shows an example of a SPC Day 1 convective outlook and 
corresponding Real-time WoFS grid with WSR-88D radars used for data assimilation overlaid.  
 
Table 15 HRRRE and Real-time WoFS configuration comparison. 

 HRRRE Real-time WoFS 

Model Version WRF-ARW v3.9+ WRF-ARW v3.9+ 

Grid Dimensions 1800 x 1060 x 50 300 x 300 x 50 

Grid Resolution 3 km 3 km 

EnKF cycling 36 mem. w/ GSI-EnKF every 1 hr 36 mem. w/ GSI-EnKF every 15 min 

Observations - Prepbufr conventional 
observations 
- GOES-16 ABI radiances 
- MRMS radar reflectivity 

-Prepbufr conventional observations 
-Oklahoma Mesonet (when available) 
-MRMS reflectivity &gt; 20 dBZ; radar 
‘zeroes’ 
-MRMS radial velocity (3-km grid w/mask) 
-GOES-16 cloud-water path 
-GOES-16 clear sky radiances 
-GOES-16 atmospheric motion vectors 
-GOES-16 GLM data 

Radiation LW/SW RRTMG/RRTMG Dudhia/RRTM, RRTMG/RRTMG 

Microphysics Thompson (aerosol aware) NSSL 2-moment 

PBL MYNN YSU, MYJ, or MYNN 

LSM RUC (Smirnova) RUC (Smirnova) 
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Figure 1 SPC 1630 UTC issued Day 1 convective outlook (left) and corresponding WoFS grid (right). 
 

ii) High-resolution WoFS 
 

 To evaluate the impact of increased grid resolution on WoFS Ensemble 0-3 h forecasts, a new 
feature of SFE 2020 is a 9-member, 1.5 km grid-spacing WoFS Ensemble generated by downscaling from 
9 members of the 3-km real-time system.  The 1.5-km members are configured just like the 3-km 
members and will be run during the nighttime after real-time runs have finished.  The 1.5 km forecasts 
will be initialized hourly from 1800 to 0300 UTC and will be viewable using the WoFS Forecast Viewer 
(https://wof.nssl.noaa.gov/realtime).        
 

iii) Dual-resolution Hybrid data assimilation experiments 
 

An experimental Warn-on-Forecast weather-adaptive, dual-resolution hybrid data assimilation and 
forecast system (WoFS-hybrid) has been developed and tested (Wang et al. 2019). The system uses WRF-
ARW as its convective scale NWP model. For the data assimilation component, the system uses the 
combination of flow-dependent ensemble background error covariances derived from the WoFS GSI-
EnKF System (Yussouf and Knopfmeier 2019; Jones et al. 2020), and static background error covariances 
from the NSSL variational data assimilation system (WoFS-var; Gao et al. 2013). The dual-resolution 
WoFS-hybrid may leverage the advantages of both WoFS-e and WoFS-var and mitigates their respective 
shortcomings. 

  In the WoFS-var component, WSR-88 radar data, satellite retrieved cloud water path, and surface 
observations will be used through rapid DA and forecast cycles (every 15 minutes) though some of these 
data will be used in different formats from those used in real-time WoFS. In addition, GOES-16 GLM data 
will be used in the var component (see Table 16 for details). An 18-h forecast launched from 1600 UTC 
with the HRRRv4 provided by GSL is used to provide boundary conditions. Similarly, a 3-h forecast 
launched from the 1200 UTC HRRRv4 is used to provide initial conditions for the hybrid analysis. The 
hybrid system will run from 1500 UTC Day 1 to 0300 UTC Day 2. A 6-h (3-h) forecast will be launched 
from the analysis each hour (half hour) from 1700 UTC during this period. The daily domain will be the 
same as the real-time WoFS.  Physics specifications and how they compare with the WoFS system are 
provided in Table 16.  These forecasts will be viewable using the web-based WoFS Forecast Viewer. 

Finally, a separate WoF-var analysis and forecast system will be run similarly to the WoFS-hybrid for 
comparison and evaluation purposes.   
  

1630 UTC Day 1 Convective Outlook 
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Table 16 Dual resolution WoFS-hybrid configuration and comparison.   

System WoFS WoFS-hybrid 

Model Version WRF-ARW v3.8 

Grid points 300 x 300 x 50 600 x 600 x 50 

Grid Spacing 3 km 1. 5 km 

Data Assimilation Cycle Every 15 min 

Observations Surface data (in NCEP Burf 
format), Oklahoma Mesonet 

(when available); Doppler 
velocity; MRMS Radar 

reflectivity>20 dBZ; radar ‘zeros’, 
radial velocity and reflectivity 

data; cloud-water path (GOES-
16) 

NCEP Surface data (in NCEP Burf 
format), Oklahoma Mesonet (when 

available); 
 radar raw radial velocity & 

reflectivity data >15 dBZ;  
radar ‘zeros’; cloud-water path 

(GOES-16); 
GLM (lightning from GOES-16) 

PBL physics  MYJ, YSU, or MYNN MYJ 

Initialization & Boundary 
Conditions 

HRRRE HRRR 

Factor of error covariances 0. 5 0. 5  

LW/SW RRTMG/RRTMG 

Microphysics NSSL 2-moment 

LSM RUC (Smirnova) 

 
e) Iowa State University (ISU) Machine Learning-based Severe Wind Probabilities 
 

A machine-learning-based tool will be used to derive probabilities that thunderstorm wind 
damage reports were truly due to severe intensity winds (50 knots or more).  It is well-known that there 
are deficiencies in the way that estimated wind values are currently assigned to thunderstorm wind 
damage reports.  Roughly 90% of all reports do not have a measured value, and instead are given an 
estimate, with an artificial spike in the frequency of 50 knot and 52 knot (60 mph) values. The 50 knot 
estimates often appear for reports involving tree damage, implying that many of these reports are not 
actually due to severe intensity winds. 

Several machine learning algorithms were trained on thunderstorm wind damage reports that 
had a measured wind value assigned to them during the 2007-2017 period. These models include a 
gradient boosted machine, a generalized linear model, an artificial neural network, a random forest, and 
an averaged ensemble. The training of these models utilized information from the Storm Report 
database, including textual information of the damage, along with SPC mesoanalysis output for 31 
weather parameters over a 200 x 200 km box centered on the storm reports at the nearest hour prior to 
the report occurrence.  Probabilities derived from each of these machine learning models will be 
available.  An example is shown in Figure 2.   



 

 
15 

 
Figure 2 SPC Day 1 probabilities of damaging wind gusts ( ≥ 50 knots) within 40-km of a point (shaded) and corresponding 

observed wind reports (boxes and triangles).  The color of the boxes indicates the probability that the report was 
associated with an actual wind gust ≥ 50 knots.   

 
f) NCAR machine learning-derived convective hazard probabilities 
 

For the 2020 SFE, two machine learning (ML) techniques (a random forest [RF] and neural 
network [NN]) are being used to produce gridded probabilistic convective hazard guidance over the 
contiguous United States. To do so, 38 diagnostics (Table 17) generated from 415 3-km, 36-h, 00 UTC 
GFS-initialized WRF forecasts of severe weather events occurring between 2010-2015 were used to train 
RF and NNs. The WRF diagnostics were upscaled to an 80-km grid and each grid point was labeled as a 
“hit” if a severe weather report occurred within a spatial and temporal neighborhood. Six labels were 
used, corresponding to the three report types, plus two significant report types, and a label if any report 
occurred. The temporal neighborhood for reports was fixed at 2-h, to produce hazard guidance within 
4-h windows, while two spatial neighborhoods were tested (40 km and 120 km). This labeled set of ~10 
million grid points of upscaled diagnostic fields and associated labels was used to train the RF and NNs. 
The configuration details of the trained ML models are provided in Table 18. 

These trained models will be fixed throughout Spring 2020 and will be used to produce 4-h 
probabilistic convective hazard predictions of the 6 severe weather hazard types at each 80-km grid 
point using output from a real-time WRF forecast, configured identically to the training WRF dataset. 
For comparison, a smoothed mid-level updraft helicity (UH)-based forecast will also be produced, by 
applying a seasonally and temporally varying threshold to the maximum UH magnitude occurring within 
2 h and 40 km or 120 km of a grid point. This binary field is then smoothed with a Gaussian smoother 
with 𝝈 = 160 km. The NN, RF, or UH probabilistic forecasts are all defined equivalently, i.e., probability 
for a particular hazard type occurring within 2 h of a forecast hour and 40 km or 120 km of a grid point. 

Evaluation of the forecasts will be facilitated through a web-based visualization interface 
available here: https://www2.mmm.ucar.edu/projects/ncar_ensemble/camviewer/. An example 4-h all 
severe hazard forecast from 8 April 2020 is provided in Figure 3.   
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Table 17 The 42 base predictors used to train the NNs & RFs. The mean of the environmental and upper-air fields, and the 
maximum of the explicit fields, within each 80-km grid box, was used as input into the ML models. In addition, 132 
neighborhood predictors were constructed by taking larger spatial and temporal means and maximums of the 15 
environmental and 7 explicit fields resulting in a final set of 174 predictors used as input into the ML models. 

Base Predictor Type Base Predictor Type 

Forecast Hour Static Surface pressure Environment 
Day of Year Static Most-unstable CAPE X 0-6km bulk wind difference Environment 
Latitude Static Significant tornado parameter Environment 
Longitude Static 700 hPa–500 hPa lapse rate Environment 
Surface-based CAPE Environment Hrly-max 2–5km UH Explicit 
Most-unstable CAPE Environment Hrly-max 0–3km UH Explicit 
Surface-based CIN Environment Hrly-max 0–1km UH Explicit 
Mixed-layer CIN Environment Hrly-max updraft speed below 400 hPa Explicit 
0-6km bulk wind difference Environment Hrly-max downdraft speed below 400 hPa Explicit 
Mixed-layer lifted condensation level Environment Hourly-max 10-m wind speed Explicit 
0-1km bulk wind difference Environment Hourly precipitation accumulation Explicit 
0-1km storm-relative helicity Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa zonal wind Upper-air 
0-3km storm-relative helicity Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa meridional wind Upper-air 
2-m temperature Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa temperature Upper-air 
2-m dew point temperature Environment 925 hPa, 850 hPa, 700 hPa, and 500 hPa dew point Upper-air 

 

Table 18 Settings used to construct and train the NNs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 19 Settings used to construct and train the RFs. 

Random Forest Hyperparameter Value 
Number of trees 100 
Maximum depth of each tree 20 
Minimum number of samples to split a node 20 
Minimum number of samples required to be a leaf node 10 
Number of features to consider for each split 13 
Splitting criterion Gini impurity 

Neural Network Hyperparameter Value 
Number of hidden layers 1 
Number of neurons in hidden layer 1024 
Dropout rate 0.1 
Learning rate 0.001 
Number of training epochs 10 
Hidden layer activation function Rectified Linear Unit 
Output layer activation function Sigmoid 
Optimizer Stochastic Gradient Descent 
Loss function Binary Cross-entropy 
Batch size 1024 
Regularization L2 
Batch normalization On 
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Figure 3 Neural network based probabilistic hazard forecast for the 4-h period between 00Z- 04Z 9 April 2020 based on a WRF 

forecast initialized at 00 UTC 8 April 2020. Numbers indicate the probability of any severe hazard occurring within 40-km 
of a grid point. Forecast reflectivity objects > 35 dBZ are overlaid. 

 
g) Texas Tech University HRRRE-based Ensemble Subsetting  
 

Ensemble sensitivity is a statistical technique applied within an ensemble that identifies features 
in the flow at early forecast times that are related to the predictability of chosen severe storm 
characteristics later in the forecast.  In other words, ensemble sensitivity reveals the flow features for 
which associated errors will grow rapidly to adversely affect the predictive skill of chosen severe storm 
aspects.  It can thus be expected that ensemble members that have the least error in the most sensitive 
regions early in a forecast window will provide better forecasts than other members, allowing the 
generation of adjusted and improved probabilities well before the next extended forecast cycle.  The 
goal of this SFE 2020 activity is to evaluate ensemble sensitivity-based subsets within the HRRRE subsets 
(Table 3) of the CLUE to understand whether they can improve forecasts over that from a full ensemble 
in a real-time environment.  The planned activity follows an evaluation at SFE 2019 of the subsetting 
technique which showed potential in the CLUE framework. 
            A daily evaluation of subset probabilities from the HRRRE against those based on the full HRRRE 
will be conducted.  The full HRRRE is a time-lagged ensemble, with all 9 members from the 1800 and 
0000 UTC initializations.  The subset will be composed of 6 members chosen from the full set of 18 
members.  Each day, a response function location and time will be chosen through a web-based 
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graphical user interface that identifies areas of Day 1 severe convection.  The Day 1 response function 
will be chosen over a 6-hr period between 1800 UTC and 1200 UTC (next day) in areas where better 
predictions of severe convection are desired (e.g. areas of high uncertainty).  Once the response time 
and location are chosen, the sensitivity of a single response function will be calculated: the number of 
grid points exceeding 50 m2/s2 2–5km updraft helicity.  These sensitivities will be generated completely 
within the TTU 42-member ensemble.  CLUE HRRRE members (interpolated to the TTU CONUS modeling 
grid) will then be chosen objectively based on their errors in the most sensitive regions using the 0600 
UTC TTU ensemble analysis. 
            Probability fields (specifically exceedance probabilities of updraft helicity) of Day 1 convection will 
be generated for the 6-member HRRRE subset and will be compared against the full 18-member time-
lagged HRRRE.  Additionally, the HRRRE member with the lowest sensitivity-weighted errors (the "best 
member") will be evaluated alongside the probability fields to understand whether it regularly provides 
forecast value in a deterministic sense.  SPC storm reports and the associated practically perfect 
probability field as well as MRMS data will serve as the observations against which the full and subset 
HRRRE probabilities and the best member are evaluated.  The TTU 42-member ensemble system within 
which the sensitivities are generated is a DART WRF ensemble Kalman filter that assimilates numerous 
surface and upper-air observations on a 6-hr assimilation cycle.  Assimilation is performed over a 12-km 
CONUS domain with downscaled 48-hr WRF forecasts run twice daily on a 4-km domain across the U.S. 
Midwest and South Plains.  Real-time output from the Texas Tech ensemble can be viewed 
at http://www.atmo.ttu.edu/bancell/real_time_ENS/ttuenshome.php. 
 
h) ML-based Severe Weather Probabilities (Loken et al. 2020) 
 

Automated “first guess” Day 1 (1200 – 1200 UTC) hazard probabilities will be generated using 
machine learning (ML).  For each day, eight random forests (RFs) predict, respectively, the probability of: 
all-hazards severe weather, all-hazards significant severe weather, any tornadoes, significant tornadoes, 
any severe wind, significant severe wind, any severe hail, and significant severe hail occurring within a 
surrounding 80 km × 80 km box. These predictions are additionally aggregated into an automated day 
1 first-guess convective outlook, analogous to that produced by SPC.  

The eight RFs use the same set of predictors, which are derived from temporally-aggregated (i.e., 
daily maximum, minimum, or mean) forecast variables (Table 20) from the 10-member HREFv2.1. 
Predictors include both simulated storm- and environment-related fields from each member as well as 
latitude and longitude. The simulated storm fields (i.e., those in the first column of Table 20) are spatially 
smoothed with a 2-dimensional Gaussian kernel density function before they are input into the RFs. 
Training occurs and output predictions are given on an approximately 80 km grid. Each RF is trained on 
the appropriate subset of archived observed SPC storm reports, with the training set dating back to April 
2018.  The methods follow those outlined in Loken et al. (2020).   
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Table 20 RF predictor variables. Simulated storm and environmental fields are from each member of the 10-member HREFv2. 
A 2-dimensional Gaussian kernel density function is applied to all storm fields before use in the RFs. Note that the RFs 
consider only those predictor variables located at the point of prediction.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulated Storm Fields Simulated Environment 
Fields 

Simulated Environment 
Fields 

Miscellaneous 
Predictors 

1 km Reflectivity 
(Daily Max.) 

2-m Temperature 
(Daily Mean) 

Lifted Index 
(Daily Min.) 

Latitude 

Echo Top 
(Daily Max.) 

2-m Dewpoint Temperature 
(Daily Mean) 

0-3 km Helicity 
(Daily Max.) 

Longitude 

Upward Vertical Velocity 
(Daily Max.) 

Surface pressure 
(Daily Mean) 

0-1 km Helicity 
(Daily Max.) 

 

Downward Vertical Velocity 
(Daily Min.) 

Precipitable Water 
(Daily Mean) 

10m-500mb Wind Shear Magnitude 
(Daily Mean) 

 

2-5 km Updraft Helicity 
(Daily Max.) 

Hourly Max. 10-m Wind 
Components (Daily Mean) 

10m-500mb Wind Shear Direction 
(Daily Mean) 

 

0-3 km Updraft Helicity 
(Daily Max.) 

MUCAPE 
(Daily Mean) 

10m-925mb Wind Shear Magnitude 
(Daily Mean) 

 

 MUCIN 
(Daily Mean) 

Critical Angle Proxy 
(Daily Mean) 

 

 0-6 km Storm Relative Motion 
Components (Daily Mean) 

CAPE × 10m-500mb Wind Shear 
(Daily Mean) 
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3. SFE 2020 Core Interests and Daily Activities 
 
 Model evaluation and forecasting activities will occur virtually 10am–noon and 1:30–4pm, 
respectively.  Tables 21 & 22 provide a schedule; further details are provided in subsequent sections. 
 
Table 21 Model evaluations schedule. 

Model Evaluations: Monday 
Time (CDT) Topic Moderator 

10:00 a.m. Welcome and Introductions Israel 

10:20 a.m. Overview of SFE Model Contributions and 
Scientific Goals 

Israel and PIs 

11:00 a.m. Preview of the Evaluations (Science Questions, 
Examples) 

Group A: Israel & David J. 
Group B: Burkely & Adam 

Model Evaluations: Tuesday-Friday 

9:45 a.m. Overview of Yesterday’s Severe Weather (David Imy) 
Break into Virtual Groups (A & B) 

 
Group A (Israel & David J.) Group B (Burkely & Adam) 

10:00 a.m. Independent Evaluations (with moderators 
available for questions) 

Independent Evaluations (with moderators available for 
questions) 

11:00 a.m. Discussion of Evaluations: 
A1. ISU ML Severe Wind Probs 
A2. NCAR ML Hazard Guidance 
A3. CLUE: 00Z CAM TL-Ensemble 
A4. CLUE: TTU Ensemble Subsetting 
A5. CLUE: Ens. Hail Guidance (Fri) 
A6. CLUE: FV3-SAR Physics/DA/VL 
A7. CLUE: FV3-SAR IC/Hord/LSM 
A8. Mesoscale Analyses 
A9. CLUE: Lightning DA  

Discussion of Evaluations: 
B1(a-f). HREF Calibrated Guidance 
B2. CLUE: 00Z CAM Multi-Model Ens. 
B3. CLUE: 12Z CAM TL-Ensemble 
B4. CLUE: Deterministic Flagships 
B5. CLUE: Core and ICs 
B6(a-f). WoFS Configurations 

 

Table 22 Short-term forecasting schedule. 

Short-Term Forecasting: Monday-Friday 
1:30 p.m. Overview of Today’s Severe Weather Threat (David Imy) 

Break into Virtual Groups (R2O & Innovation) 
 

R2O (Israel & Mike) Innovation (David Imy & Adam) 

1:40 p.m. Overview of SFE Drawing Tool (M); Evaluation of 
Yesterday’s Forecasts (T-F) 

Overview of WoFS Drawing Tool (M); Evaluation of 
Yesterday’s Forecasts (T-F) 

2:00 p.m. Day 1 Outlook Generation* 
Full period (20-12Z) coverage and conditional 
intensity forecasts of tornado, hail, and wind using 
available 12Z CAM ensemble guidance (not WoFS) 
and observations.  

Short-Term Outlook Generation*^ 
1-h (21-22Z) and 4-h (21-01Z) probabilistic forecasts of 
tornado, hail, and wind.  Some forecasters with access to 
WoFS^ and some without*. 

3:00 p.m. Day 1 Outlook Update* 
Update full period (21-12Z) coverage and 
conditional intensity forecasts of tornado, hail, and 
wind using WoFS and observations.  

Short-Term Outlook Update*^ 
1-h (21-22Z) and 4-h (21-01Z) probabilistic forecasts of 
tornado, hail, and wind.  Same forecasters with access to 
WoFS^ and same without*. 

* Using SFE Drawing Tool 
^ Using WoFS Drawing Tool 
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a. Formal Evaluation Activities 
 

SFE 2020 will feature one period of formal evaluation from 10am-noon.  The evaluations will be 
done virtually and involve comparisons of different ensemble diagnostics, CLUE ensemble subsets, HREF, 
and the WoFS Ensembles.  Participants will be split into Groups A & B, which will each conduct a separate 
set of evaluations.  On Mondays, SFE coordinators will go through the evaluations with participants to 
provide background information and instructions.  Then, Tuesday – Friday, participants will conduct the 
evaluations individually during the 10-11am time period.  Then, from 11am-noon, each group will 
reconvene in a virtual meeting (Google Meet) to discuss various aspects of the evaluations (e.g., 
questions anybody has, interesting differences, particularly notable differences in performance, etc.).  
The two different sets of evaluations are summarized below.   

 
Group A 
 
A1. ISU ML Severe Wind Probs 
 
 An evaluation will be conducted of a ML-based tool to estimate the likelihood that a damaging 
wind report was caused by wind ≥ 50 knots.  The evaluations will focus on perceived usefulness of the 
output via comparison with SPC forecasts of severe wind probability, best methods to display the 
information, and subjective evaluation of different ML techniques.  The evaluation will be conducted on 
an external web page hosted by Iowa State University.   
 
Primary Science Question: Can machine-learning approaches provide useful information regarding the 
likelihood of wind damage reports being associated with gusts ≥ 50 knots? 
 
A2. NCAR ML Hazard Guidance 
 
 Two ML techniques (random forest and neural network) will be used to produce gridded 
probabilistic hazard guidance using a deterministic 3-km grid-spacing WRF model configuration run by 
NCAR.  Evaluation will focus on the perceived utility of the ML-based based products and subjective 
evaluation of the two unique ML techniques.  The evaluation will be conducted on an external web page 
hosted by NCAR https://www2.mmm.ucar.edu/projects/ncar_ensemble/camviewer/.    
 
Primary Science Question: Can machine-learning approaches provide guidance that can discriminate 
among severe weather hazards? 
 
 A3. CLUE: 00Z CAM TL-Ensemble 
  

This evaluation will compare two single-model ensembles (HRRRE and UM) initialized at 0000 
UTC with their respective time-lagged ensembles (I.e., half of the members each from 0000 UTC and 
1800 UTC).  These single-model ensembles will be compared to the HREFv2.1 and HREFv3, which serve 
as the baseline for CAM ensemble performance.  The goal is to assess whether time-lagging results in 
improved probabilistic forecasts from single-model ensembles. 
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Primary Science Question: Is time-lagging a viable option for formal CAM ensemble design? 
 
A4. CLUE: TTU Ensemble Subsetting 
 
 Severe weather probabilities for a 6-member HRRRE subset will be compared to those from the 
“full” HRRRE composed of the 18-members initialized from 1800 and 0000 UTC.  The 6-member subset 
is composed of the members with the smallest errors in sensitive regions as determined by ensemble 
sensitivity analysis.  Additionally, the best HRRRE member (i.e., lowest sensitivity-weighted errors) will 
also be evaluated.   
 
Primary Science Question: Can a sensitivity-based ensemble subsetting approach lead to improved 
guidance over the full ensemble for severe-weather forecasting? 
 
A5. CLUE: Ens. Hail Guidance (Fridays only) 
 

Maximum hail size fields will be formally evaluated within the HRRRE.  These hail size forecasts 
will include those derived by (1) the HAILCAST algorithm (Adams-Selin and Ziegler 2016), which predicts 
maximum hail size using a hail growth model coupled to WRF, (2) the Thompson method, which 
estimates hail size directly from the microphysics size distribution by finding the largest graupel or hail 
hydrometeor diameter that exceeds a specified number concentration, (3) neighborhood-based, 
probabilistic forecasts of UH exceeding a fixed threshold loosely calibrated to maximize the fractions skill 
score (FSS) for 1-inch hail, and (4) a machine-learning-based method that provides probabilistic hail size 
forecasts (Gagne et al. 2017).  Comparisons will be made to hail LSRs and MRMS MESH.   

 
Primary Science Question: What is the best algorithm/approach to estimate hail size from CAM 
ensembles? 
 
A6. CLUE: FV3-SAR Physics/DA/VL  
 
 This comparison (4-panel display) will examine the FV3-SAR configurations provided by EMC 
(Table 11) that vary the physics suite and add a data assimilation component.  In addition, a similarly 
configured FV3-SAR run from NSSL (Table 10) with additional vertical levels will be examined. Particular 
attention will be given to simulated storm structure, convective evolution, and location/coverage of 
storms, as well the impact of these configurations on 2-m T/Td and thermodynamic sounding profiles.. 
Storm surrogate fields, like hourly maximum updraft helicity, will also be examined to gauge their utility 
for forecasting severe storms.   
 
Primary Science Question: What is the optimal configuration of the FV3-SAR for convective weather 
forecasting? 
 
A7.  CLUE: FV3-SAR IC/Hord/LSM  
 
 This set of comparisons (6-panel display) will examine the set of FV3-SAR runs provided by GSL 
(Table 4), along with an FV3-SAR run provided by EMC and initialized from GFS (Table 11).  The goal of 
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this evaluation is to compare the relative impact of initial conditions, land surface model, and horizontal 
advection settings on the forecasts.  Particular attention will be given to simulated storm structure, 
convective evolution, and location/coverage of storms, as well the impact of these configurations on 2-
m T/Td and thermodynamic sounding profiles.  
 
Primary Science Question: What is the optimal configuration of the FV3-SAR for convective weather 
forecasting? 
 
A8. Mesoscale Analyses 
 
 This evaluation will examine 15-minute output of two different versions of the 3D real-time 
mesoscale analysis (3D-RTMA) system that use HRRRv4 forecasts as the background.  One version 
provided by GSL uses the GDAS for background error covariance information in the hybrid DA system, 
while the other version provided by EMC uses the HRRRDAS for background error covariance 
information.  The goal is to assess the utility of these analysis systems for situational awareness and 
short-term forecasting for convective-weather scenarios. 
 
Primary Science Question: Does using information from a CAM ensemble in the hybrid ensemble-
variational analysis improve its utility for short-term convective forecasting applications? 
 
A9. CLUE: Lightning DA  
 
This comparison will focus on forecast hours 0-12 over areas with sparse radar coverage, so the focus 
areas may be different from that of the other experiments focused on severe weather.  WRF-ARW 
simulations with HRRRv4 physics that use a convective scale data assimilation system, NEWS3DVAR 
(Fierro et al. 2016, 2018), with and without assimilation of total lightning data from the GOES 16 
Geostationary Lightning Mapper (GLM) will be examined (Table 8) using a 3-panel display.  Particular 
attention will be given to location/coverage of storms, simulated storm structure, and convective 
evolution., and location/coverage of storms.  
 
Primary Science Question: Does the assimilation of GOES-16 GLM data improve short-term forecasts (0-
12 hours) of thunderstorms in radar-sparse regions? 
 
Group B 
 
B1. HREF Calibrated Guidance 
 
 a. 24-h tornado guidance  
 
 Climatological frequencies of tornadoes associated with specified ranges of STP are used to 
derive tornado probabilities using simulated updraft helicity and STP for 40-km radius circular areas 
(Gallo et al. 2018; STP Cal. Circle). Two other similar approaches are used that only consider STP within 
storm inflow quadrants – one that attempts to filter out UH associated with MCSs, and one without the 
MCS filter. Additionally, calibrated probabilities using a combination of SREF and HREF data are 
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evaluated (Jirak et al. 2014), along with probabilities derived from the Loken et al. (2020) random forest 
machine learning algorithm.  
 
 b. 4-h tornado guidance 
 

For 4-h tornado probabilities, only the STP Cal. Circle and HREF/SREF calibrated probabilities are 
evaluated along with SPC Timing Guidance (derived from SPC Outlooks and HREF/SREF calibrated 
guidance using a temporal disaggregation approach; Jirak et al. 2012; Jirak et al. 2020).   

 
c. 24-h hail guidance 
 

 Machine learning-based forecasts using the methods outlined in Burke et al. (2020) are evaluated 
along with HREF/SREF calibrated probabilities, and Loken et al. (2020) machine-learning-based 
probabilities.   
 
 d. 4-h hail guidance 
 

Burke et al. (2020) ML forecasts, temporally disaggregated SPC Timing Guidance, and HREF/SREF 
calibrated probabilities are examined.   

 
e. 24-h wind guidance 
 

 HREF/SREF and Loken et al. (2020) calibrated probabilities are examined.   
 

f. 4-h wind guidance 
 
HREF/SREF calibrated probabilities and SPC Timing Guidance are examined.   

 
Primary Science Question: What are the best approaches and techniques to develop calibrated hazard 
probabilities from the HREF? 
 
B2. CLUE: 00Z CAM Multi-Model Ens.  
 
 This evaluation will compare single-model, 18-member time lagged HRRRE and UM ensembles, 
while another comparison will evaluate 0000 UTC multi-model (HRRRE and UM), 18-member single 
model ensembles and a 36-member, time-lagged, multi-model ensemble. HREF (v2.1 and v3) will be used 
as a baseline for performance.  The goal is to explore the sensitivity of time-lagging and multi-model 
strategies in CAM ensemble configurations. 
 
Primary Science Question: What is the relative impact of time-lagging and multi-model approaches in 
CAM ensembles for next-day severe-weather forecasting? 
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B3. CLUE: 12Z CAM TL-Ensemble  
 
 Three nine-member, single-model ensembles based at 1200 UTC that use different time-lagging 
strategies will be compared.  The first ensemble, HRRRE, does not use time-lagging; the second 
ensemble, HRRRE-TL9, uses 3 members from the 0000, 0600, and 1200 UTC HRRRE initializations; and 
the third ensemble, HRRR/NSSL-WRF-TL, uses a mix of five HRRR and four NSSL-WRF configurations each 
initialized with HRRRv4 initial conditions at different times between 0000 and 1200 UTC.  The goal is to 
determine whether time-lagged ensembles (of multiple designs) can provide improved probabilistic 
guidance over a single-model ensemble initialized at a single time. 
 
Primary Science Question: What is the optimal design for a single-model, time-lagged ensemble?  
 
B4. Deterministic Flagships 
 

This activity will focus on assigning ratings to gauge the skill and utility of the primary 
deterministic CAMs provided by each SFE collaborator – UK Met Office (um-ICs02), GFDL (gfdl-fv3), NSSL 
(sarfv3-ICs01), and EMC (emc-fv3sar). These runs will be compared to the HRRRv4, which was developed 
by GSL and will soon be operational.   Particular attention will be given to simulated storm structure, 
convective evolution, and location/coverage of storms. Storm surrogate fields, like hourly maximum 
updraft helicity, will also be examined to gauge their utility for forecasting severe storms.    

 
Primary Science Question: How do the deterministic CAM runs using the UM and FV3 dynamic core 
compare to the operational standard for convective forecasting (i.e., WRF-ARW)?  
 
B5. CLUE: Core and ICs 
 
 In this comparison, a matrix of 6 simulations using multiple model cores: WRF-ARW (Table 5), 
SAR-FV3-SAR (Table 10), and UM (Table 7), each initialized from GFS and UK Met Office global models, 
will be examined.  Each row of panels will display a single model core with corresponding observations 
to the right, and each column will display the same set of initial conditions. The goal is to assess the 
sensitivity of convection-allowing model runs to initial conditions and model core.  Particular attention 
will be given to simulated storm structure, convective evolution, and location/coverage of storms. Storm 
surrogate fields, like hourly maximum updraft helicity, will also be examined to gauge their utility for 
forecasting severe storms.   
 
Primary Science Question: What is the relative impact of initial conditions and model core on next-day 
convective forecasts? 
 
B6. WoFS Configurations 
 

a.-c. Real-time 3-km vs. Experimental 1.5-km 
 

This comparison will examine neighborhood maximum ensemble probabilities of storm 
diagnostics like updraft helicity, updraft speed, 10-m wind speed, and hail size (HAILCAST) compared to 
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LSRs for tornado, hail and wind, MRMS reflectivity and MESH, and NWS warnings.  A set of 2-panels will 
display each WoFS configuration for (a) 2000, (b) 2200, and (c) 0000 UTC WoFS initializations.    
 

d. Evolution of forecasts with decreasing lead time 
  
 In this 6-panel comparison, 1700, 1800, 1900, 2000, 2100, and 2200 UTC initializations of the 
real-time WoFS configuration valid for the same time window, will be examined to gauge the evolution 
of the WoFS forecasts with decreasing lead time.   
 

e.-f.  Hybrid and Var DA comparison 
 
 These comparisons will examine the deterministic 1.5 km grid-spacing Hybrid and Var data 
assimilation runs (Table 16) initialized from (a) 2000, and (b) 2200 UTC.   
 
Primary Science Question: Does reduced grid spacing improve WoFS ability to forecast convective storm 
mode, evolution, and intensity? 
 
b. Forecast products and activities 
 

Because of the COVID-19 pandemic, forecasting activities will be limited in scope and occur 
virtually from 1:30-4pm daily with a focus on adding temporal specificity to convective outlooks within 
the Day 1 time period using WoFS Ensemble datasets.  Participation will be limited to a small internal 
group, as well as weekly groups of NWS forecasters.  The experimental forecasts will cover a limited-
area domain typically covering the primary severe threat area with a domain based on existing SPC 
outlooks and/or where interesting convective forecast challenges are expected.  As in previous years, 
two sets of unique outlooks will be generated by the R2O and Innovation desks.  Both desks will issue 
outlooks for the probability of individual hazards (tornado, wind gusts ≥ 50 knots, hail ≥ 1.0 in.) within 
25 miles (40 km) of a point.  For the Innovation desk, forecasting individual hazards is a shift from 
previous years when all the outlooks were focused on total severe (i.e., all hazards combined).   

At the R2O desk, participants will update the operational SPC 1630Z Day 1 Outlook hazard 
probabilities for the period 2100 – 1200 UTC.  Additionally, conditional intensity forecasts will be 
generated, for which SPC’s operational probabilities of significant severe hazards (EF-2 or greater 
tornadoes, winds ≥ 65 kts, or hail ≥ 2 in.) can be used as a starting point.  This will be the second year 
that the R2O desk has issued conditional intensity forecasts.  These forecasts delineate areas that are 
expected to follow a “normal”, “hatched”, or “double-hatched” distribution.  In plain language, “normal” 
refers to a typical severe weather day, where significant severe weather is unlikely, “hatched” areas 
indicate where significant severe weather is possible, and “double-hatched” areas indicate where high-
impact significant severe weather is expected.  These forecasts could also be thought of as indicating the 
proportion of observed reports that are expected to be severe, where going from “normal” to, “hatched” 
to , and “double-hatched” would indicate an increasing proportion of significant-severe reports.  One set 
of forecasts will be generated 2-3pm for which WoFS data will not be used, and a final set of forecasts 
will be generated 3-4pm with available WoFS datasets.  All forecasts at the R2O desk will be generated 
using the “SFE viewer” (https://hwt.nssl.noaa.gov/sfe_viewer/2020/forecast_tool).   
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At the Innovation desk, participants will generate severe hazard probabilities valid over a short 
time window, 4-5pm (2100-2200 UTC), and a long time window, 4-8pm (2100-0100 UTC).  An initial 
forecast will be generated during the 2-3pm period and an updated final forecast during the 3-4pm 
period.  For both sets of initial and final forecasts, one group of forecasters will be able to use all available 
datasets except for WoFS, while another will use all available datasets including WoFS.  The group that 
doesn’t use WoFS will use the SFE viewer to generate forecasts, while the groups that uses WoFS will 
use the WoFS viewer (https://wof.nssl.noaa.gov/research/).   

These WoF activities are the fourth year the WoF Ensemble has been tested in the EFP, and 
explores the potential utility of WoF products for issuing guidance between the watch and warning time 
scales (i.e. 0.5 to 6-h lead times). These activities represent efforts to explore ways of seamlessly merging 
probabilistic severe weather outlooks with probabilistic severe weather warnings as part of NOAA’s 
Warn-on-Forecast (WoF; Stensrud et al. 2009) and Forecasting a Continuum of Environmental Threats 
(FACETs; Rothfusz et al. 2018) initiatives. These efforts also support the transition to higher temporal 
resolution forecasts at the SPC. 
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Appendix A: List of scheduled SFE 2020 participants.   
 

Week 1 
April 27-May 1 

Week 2 
May 4-8 

Week 3 
May 11-15 

Week 4 
May 18-22 

Week 5 
May 26-29 

Lizzie Tirone (ISU) Lizzie Tirone (ISU) Lizzie Tirone (ISU) Lizzie Tirone (ISU) Lizzie Tirone (ISU) 

Jeremiah Pyle (AWC) Brice Coffer (NCState) Bill Gallus (ISU) 
Lance Bosart (Suny-
Albany) 

Kallan Parker (PSU; 
Hollings) 

Victor Gensini (NIU) Lucia Scaff (U. Sask) Kyle Hugeback (ISU) 
Bruno Ribeiro (Suny-
Albany) Clark Evans (UWM) 

Ryan Sobash (NCAR) Corey Potvin (NSSL) 
Michou Baart de la 
Faille (KNMI) 

Scott Feldman (Suny-
Albany) Dillon Blount (UWM) 

Yongming Wong 
(OU/MAP) Becky Adams-Selin (AER) Tina Kalb (DTC) Steve Weiss (SPC Ret.) Craig Schwartz (NCAR) 

Amanda Burke (OU) Alicia Bentley (EMC) John Allen (CMU) Harald Richter (BoM) Ben Blake (EMC) 

Jacob Carley (EMC) Aaron Johnson (MAP) Glen Romine (NCAR) 
Tom Galarneau 
(CIMMS/NSSL) Xiaoyan Zhang (EMC) 

Brett Borchardt (WFO 
LOT) 

Andrew McKaughan (WFO 
PIH) Paige Crafter (USAF) Tony Oakley (USAF) Austin Coleman (TTU) 

Matt Anderson (WFO 
MRX) Alex Lukinbeal (WFO MSO) Logan Dawson (EMC) Gang Zhou (EMC) Jidong Gao (NSSL) 

Alex Krull (WFO DMX) Hayden Frank (WFO BOX) Austin Dixon (OU) Matt Pyle (EMC) Jamie Wolff (DTC) 
David Harrison 
(CIMMS/SPC) 

Patrick Skinner 
(CIMMS/NSSL) Austin Coleman (TTU) Austin Coleman (TTU) 

Corey Mead (WFO 
OAX) 

Derek Stratman 
(CIMMS/NSSL) Yibing Su (Princeton) 

Mike Seaman (WFO 
SLC) 

Jason Godwin (WFO 
FWD) Nick Vertz (WFO BYZ) 

Joe Pollina (WFO OKX) Jeff Beck (GSL) Eric Bunker (WFO TAE) 
Tom Hultquist (WFO 
MPX) Curtis Alexander (GSL) 

Jeff Duda (GSL) Terra Ladwig (GSL) 
Robert Megnia (WFO 
LCH) Dan McKemy (WFO LMK) John Brown (GSL) 

Dave Turner (GSL) Nigel Roberts (UK Met) 
Steve Zubrick (WFO 
LWX) Mike Evans (WFO ALY)  

Aurore Porson (UK 
Met)  Geoff Manikin (EMC) David Dowell (GSL)  

  John Brown (GSL) Eric James (GSL)  

  Ed Szoke (GSL) Mike Bush (UK Met)  

  
Aurore Porson (UK 
Met) Dave Ahijevych (NCAR)  

  Nigel Roberts (UK Met)   

  
Bethany Earnest 
(CIMMS/SPC)   

 
SFE Facilitators: Adam Clark (NSSL), Israel Jirak (SPC), Dave Imy (retired SPC), Mike Coniglio (NSSL/SPC), Burkely Gallo 
(CIMMS/SPC), Kenzie Krocak (CIMMS/NSSL/OU), Brett Roberts (CIMMS/SPC/NSSL), Kent Knopfmeier (CIMMS/NSSL), and 
Andy Dean (SPC). 
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Appendix B: Organizational structure of the NOAA/Hazardous Weather Testbed 
 

NOAA’s Hazardous Weather Testbed (HWT) is a facility jointly managed by the National Severe 
Storms Laboratory (NSSL), the Storm Prediction Center (SPC), and the NWS Oklahoma City/Norman 
Weather Forecast Office (OUN) within the National Weather Center building on the University of 
Oklahoma South Research Campus.  The HWT is designed to accelerate the transition of promising new 
meteorological insights and technologies into advances in forecasting and warning for hazardous 
mesoscale weather events throughout the United States.  The HWT facilities are situated between the 
operations rooms of the SPC and OUN.  The proximity to operational facilities, and access to data and 
workstations replicating those used operationally within the SPC, creates a unique environment 
supporting collaboration between researchers and operational forecasters on topics of mutual interest. 

The HWT organizational structure is composed of three overlapping programs (Fig. B1).  The 
Experimental Forecast Program (EFP) is focused on predicting hazardous mesoscale weather events on 
time scales ranging from hours to a week in advance, and on spatial domains ranging from several 
counties to the CONUS. The EFP embodies the collaborative experiments and activities previously 
undertaken by the annual SPC/NSSL Spring Experiments.  For more information see 
http://www.nssl.noaa.gov/projects/hwt/efp/. 

The Experimental Warning Program (EWP) is concerned with detecting and predicting mesoscale 
and smaller weather hazards on time scales of minutes to a few hours, and on spatial domains from 
several counties to fractions of counties.  The EWP embodies the collaborative warning-scale 
experiments and technology activities previously undertaken by the OUN and NSSL.  For more 
information about the EWP see http://www.nssl.noaa.gov/projects/hwt/ewp/.  A key NWS strategic 
goal is to extend warning lead times through the “Warn-on-Forecast” concept (Stensrud et al. 2009), 

Figure B1:  The umbrella of the NOAA Hazardous Weather Testbed (HWT) encompasses two 
program areas:  The Experimental Forecast Program (EFP), the Experimental Warning 
Program (EWP), and the GOES-R Proving Ground (GOES-R). 
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which involves using frequently updated short-range forecasts (≤ 1h lead time) from convection-
resolving ensembles.  This provides a natural overlap between the EFP and EWP activities. 

The GOES-R Proving Ground (established in 2009) exists to provide demonstration of new and 
innovative products as well as the capabilities available on the next generation GOES-16 satellite.  The 
PG interacts closely with both product developers and NWS forecasters. More information about GOES-
R Proving Ground is found at http://cimss.ssec.wisc.edu/goes_r/proving-ground.html. 

Rapid science and technology infusion for the advancement of operational forecasting requires 
direct, focused interactions between research scientists, numerical model developers, information 
technology specialists, and operational forecasters.  The HWT provides a unique setting to facilitate such 
interactions and allows participants to better understand the scientific, technical, and operational 
challenges associated with the prediction and detection of hazardous weather events.  The HWT allows 
participating organizations to: 

 
• Refine and optimize emerging operational forecast and warning tools for rapid integration into 

operations  
• Educate forecasters on the scientifically correct use of newly emerging tools and to familiarize 

them with the latest research related to forecasting and warning operations  
• Educate research scientists on the operational needs and constraints that must be met by any 

new tools (e.g., robustness, timeliness, accuracy, and universality)  
• Motivate other collaborative and individual research projects that are directly relevant to 

forecast and warning improvement 
 

For more information about the HWT, see http://www.nssl.noaa.gov/hwt/.  Detailed historical 
background about the EFP Spring Experiments, including scientific and operational motivation for the 
intensive examination of high resolution NWP model applications for convective weather forecasting, 
and the unique collaborative interactions that occur within the HWT between the research and 
operational communities, are found in Weiss et al. (2010 – see 
http://www.spc.noaa.gov/publications/weiss/hwt-2010.pdf), Clark et al. (2012; 2018), and Gallo et al. 
(2017). 
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Appendix C: CLUE system output fields 
 
Table C1 The minimum set of 123 output diagnostics for the WRF-ARW CLUE members, which are output at hourly intervals.   

Number Level/Layer Parameter Description 

001 entire atmosphere REFC Composite reflectivity [dB] 

002 cloud top RETOP Echo Top [m] 

003 entire atmosphere VIL Radar-Simulated Vertically Integrated Liquid [kg/m2] 

004 surface VIS Visibility [m] 

005 1000 m above ground REFD Reflectivity [dB] 

006 4000 m above ground REFD Reflectivity [dB] 

007 surface GUST Wind Speed (Gust) [m/s] 

008 500 mb HGT Geopotential Height [gpm] 

009 500 mb TMP Temperature [K] 

010 500 mb DPT Dew Point Temperature [K] 

011 500 mb UGRD U-Component of Wind [m/s] 

012 500 mb VGRD V-Component of Wind [m/s] 

013 700 mb HGT Geopotential Height [gpm] 

014 700 mb TMP Temperature [K] 

015 700 mb DPT Dew Point Temperature [K] 

016 700 mb UGRD U-Component of Wind [m/s] 

017 700 mb VGRD V-Component of Wind [m/s] 

018 850 mb HGT Geopotential Height [gpm] 

019 850 mb TMP Temperature [K] 

020 850 mb DPT Dew Point Temperature [K] 

021 850 mb UGRD U-Component of Wind [m/s] 

022 850 mb VGRD V-Component of Wind [m/s] 

023 925 mb TMP Temperature [K] 

024 925 mb DPT Dew Point Temperature [K] 

025 925 mb UGRD U-Component of Wind [m/s] 

026 925 mb VGRD V-Component of Wind [m/s] 

027 1000 mb TMP Temperature [K] 

028 1000 mb DPT Dew Point Temperature [K] 

029 1000 mb UGRD U-Component of Wind [m/s] 

030 1000 mb VGRD V-Component of Wind [m/s] 

031 100-1000 mb above 
ground MAXUVV Hourly Max upward Vertical Velocity - lowest 100hPa 

[m/s] 
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032 100-1000 mb above 
ground MAXDVV Hrly Max downward Vertical Velocity -  lowest 

100hPa [m/s] 

033 0.5-0.8 sigma layer DZDT Vertical Velocity (Geometric) [m/s] 

034 mean sea level PRMSL Pressure Reduced to MSL [Pa] 

035 1000 mb HGT Geopotential Height [gpm] 

036 1000 m above ground MAXREF Hourly Max of Simulated Reflectivity at 1 km AGL [dB] 

037 5000-2000 m above 
ground MXUPHL Hrly Max Updraft Helicity - 2km to 5 km AGL [m2/s2] 

038 entire column TCOLG Total Column Integrated Graupel [kg/m2] 

039 surface LTNG Lightning [non-dim] 

040 80 m above ground UGRD U-Component of Wind [m/s] 

041 80 m above ground VGRD V-Component of Wind [m/s] 

042 surface PRES Pressure [Pa] 

043 surface HGT Geopotential Height [gpm] 

044 surface TMP Temperature [K] 

045 0 m underground MSTAV Moisture Availability [%] 

046 surface WEASD Water Equivalent of Accumulated Snow Depth 
[kg/m2] 

047 surface SNOWC Snow Cover [%] 

048 surface SNOD Snow Depth [m] 

049 2 m above ground TMP Temperature [K] 

050 2 m above ground SPFH Specific Humidity [kg/kg] 

051 2 m above ground DPT Dew Point Temperature [K] 

052 10 m above ground UGRD U-Component of Wind [m/s] 

053 10 m above ground VGRD V-Component of Wind [m/s] 

054 10 m above ground WIND Wind Speed [m/s] 

055 surface CPOFP Percent frozen precipitation [%] 

056 surface PRATE Precipitation Rate [kg/m2/s] 

057 surface APCP Total Precipitation [kg/m2] 

058 surface WEASD Water Equivalent of Accumulated Snow Depth 
[kg/m2] 

059 surface APCP Precipitation [kg/m2] – hourly total 

060 surface WEASD Water Equivalent of Accumulated Snow Depth 
[kg/m2] 

061 surface CSNOW Categorical Snow [-] 

062 surface CICEP Categorical Ice Pellets [-] 

063 surface CFRZR Categorical Freezing Rain [-] 
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064 surface CRAIN Categorical Rain [-] 

065 surface VGTYP Vegetation Type [Integer(0- 13)] 

066 500-1000 mb LFTX Surface Lifted Index [K] 

067 surface CAPE Convective Available Potential Energy [J/kg] 

068 surface CIN Convective Inhibition [J/kg] 

069 entire column PWAT Precipitable Water [kg/m2] 

070 low cloud layer LCDC Low Cloud Cover [%] 

071 middle cloud layer MCDC Medium Cloud Cover [%] 

072 high cloud layer HCDC High Cloud Cover [%] 

073 entire atmosphere TCDC Total Cloud Cover [%] 

074 cloud base PRES Pressure [Pa] 

075 cloud base HGT Geopotential Height [gpm] 

076 cloud ceiling HGT Geopotential Height [gpm] 

077 cloud top PRES Pressure [Pa] 

078 cloud top HGT Geopotential Height [gpm] 

079 top of atmosphere ULWRF Upward Long-Wave Rad. Flux [W/m2] 

080 surface DSWRF Downward Short-Wave Radiation Flux [W/m2] 

081 3000-0 m above ground HLCY Storm Relative Helicity [m2/s2] 

082 1000-0 m above ground HLCY Storm Relative Helicity [m2/s2] 

083 0-6000 m above ground USTM U-Component Storm Motion [m/s] 

084 0-6000 m above ground VSTM V-Component Storm Motion [m/s] 

085 0-1000 m above ground VUCSH Vertical U-Component Shear [1/s] 

086 0-1000 m above ground VVCSH Vertical V-Component Shear [1/s] 

087 0-6000 m above ground VUCSH Vertical U-Component Shear [1/s] 

088 0-6000 m above ground VVCSH Vertical V-Component Shear [1/s] 

089 180-0 mb above ground 4LFTX Best (4 layer) Lifted Index [K] 

090 180-0 mb above ground CAPE Convective Available Potential Energy [J/kg] 

091 180-0 mb above ground CIN Convective Inhibition [J/kg] 

092 surface HPBL Planetary Boundary Layer Height [m] 

093 lifted condensation level HGT Geopotential Height [gpm] 

094 90-0 mb above ground CAPE Convective Available Potential Energy [J/kg] 

095 90-0 mb above ground CIN Convective Inhibition [J/kg] 

096 255-0 mb above ground CAPE Convective Available Potential Energy [J/kg] 

097 255-0 mb above ground CIN Convective Inhibition [J/kg] 

098 equilibrium level HGT Geopotential Height [gpm] 

099 255-0 mb above ground PLPL Pressure of level from which parcel was lifted [Pa] 
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100 surface LAND Land Cover (0=sea, 1=land) [Proportion] 

101 surface ICEC Ice Cover [Proportion] 

102 250 mb UGRD U-component of wind [m/s] 

103 250 mb  VGRD V-component of wind [m/s] 

104 250 mb  HGT Geopotential Height [gpm] 

105 250 mb  TMP Temperature [K] 

106 700 mb  VVEL Vertical Velocity [m/s] 

107 -10 C REFD Reflectivity [dB] 

108 -10 C REFD Hourly maximum of -10C reflectivity 

109 5000-2000 m above 
ground MNUPHL Hrly Min Updraft Helicity - 2km to 5 km AGL [m2/s2] 

110 2000-0 m above ground MXUPHL Hrly Max Updraft Helicity - 0km to 2 km AGL [m2/s2] 

111 2000-0 m above ground MNUPHL Hrly Min Updraft Helicity - 0km to 2 km AGL [m2/s2] 

112 3000-0 m above ground MXUPHL Hrly Max Updraft Helicity - 0km to 3 km AGL [m2/s2] 

113 3000-0 m above ground MNUPHL Hrly Min Updraft Helicity - 0km to 3 km AGL [m2/s2] 

114 2000-0 m above ground RELV Hrly Max Rel. Vort. – 0km to 2km AGL [1/s] 

115 1000-0 m above ground RELV Hrly Max Rel. Vort. – 0km to 1km AGL [1/s] 

116 entire column HAIL Hrly Max of Hail/Graupel Diameter [m] 

117 0.1 sigma HAIL Hrly Max of Hail/Graupel Diameter [m] 

118 5000-2000m AGL UPHL Updraft Helicity (instantaneous) [m2/s2] 

119 6000-1000m AGL UPHL Updraft Helicity (instantaneous) [m2/s2] 

120 top of atmos SBT123 Simulated Brightness T for GOES 12 Ch. 3 [K] 

121 top of atmos SBT124 Simulated Brightness T for GOES 12 Ch. 4 [K] 

122 top of atmos SBT113 Simulated Brightness T for GOES 11 Ch. 3 [K] 

123 top of atmos SBT114 Simulated Brightness T for GOES 11 Ch. 4 [K] 
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